Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shang Shan, ${ }^{\text {a }}{ }^{*}$ Zheng Fan, ${ }^{\text {a }}$

 Wei-Xiao Hu ${ }^{\text {a }}$ and Duan-Jun Xu ${ }^{\text {b }}$${ }^{\text {a }}$ College of Chemical and Materials Engineering, Zhejiang University of Technology, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail:
shanshang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.127$
Data-to-parameter ratio $=12.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Benzylideneacetone 2,4-dinitrophenylhydrazone

Crystals of the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$, were obtained from a condensation reaction of benzylideneacetone and 2,4dinitrophenylhydrazine. The molecule has a nearly planar structure with a dihedral angle of 7.57 (4) ${ }^{\circ}$ between the dinitrophenyl and benzylidene mean planes. Within the dinitrophenyl moiety, the distances of 1.420 (2) and 1.411 (3) \AA for the $\mathrm{C}-\mathrm{C}$ bonds near the imine group are longer than the average distance of 1.374 (3) \AA for the other $\mathrm{C}-\mathrm{C}$ bonds in the same benzene ring. The short $\mathrm{N}-\mathrm{C}$ distance of $1.338(2) \AA$ indicates electron delocalization between the imine group and dinitrophenyl ring.

Comment

In view of the potential application of phenylhydrazone derivatives in biochemistry (Okabe et al., 1993), a series of phenylhydrazone derivatives has been prepared in our laboratory. We present here the X-ray structure of the title compound, (I), and compare it with those reported previously (Shan et al., 2002, 2003).

(I)

The molecule of (I) is nearly planar, except for the methyl H atoms (Fig. 1). The dinitrophenyl mean plane is inclined with respect to the benzylidene mean plane by a small dihedral angle of 7.57 (4).

The $\mathrm{N} 2=\mathrm{C} 7$ distance (Table 1) is typical of a double bond, and the methyl group and imine $\mathrm{N} 1-\mathrm{H} 1$ bond are on the same side of the $\mathrm{N} 2=\mathrm{C} 7$ double bond. The methyl group, refined with torsional freedom about the $\mathrm{C}-\mathrm{C}$ bond to optimise the fit to the electron density, shows a different conformation from that calculated by $S X G R A P H$ (Farrugia, 1999). The torsion angles $\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 a=-50.2^{\circ}$ and $\mathrm{N} 2-$ $\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{c}=69.8^{\circ}$ show that the observed methyl conformation minimizes the steric hindrance between the methyl group and the $\mathrm{N} 1-\mathrm{H} 1$ bond.

The $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ bonds near the imine group are appreciably longer than the average distance of 1.374 (3) \AA for the other $\mathrm{C}-\mathrm{C}$ bonds in the same benzene ring (Table 1). This situation agrees with that reported previously for $2,4-$

Received 26 October 2004
Accepted 16 November 2004
Online 27 November 2004

The molecular structure of (I), with 30% probability displacement ellipsoids. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots C g$ interactions. [Symmetry code: (iii) $-x, 1-y, 1-z]$.

Figure 2

A stereoview of the unit-cell packing diagram, showing the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.
dinitrophenylhydrazone derivatives (Ohba, 1996; Naidu et al., 1996; Borwick et al., 1997; Bolte \& Dill, 1998; Shan et al., 2003). The $\mathrm{N} 1-\mathrm{C} 1$ bond is significantly shorter than the $\mathrm{N} 1-\mathrm{N} 2$ bond, suggesting electron delocalization between imine atom N 1 and the C1-containing benzene ring. This may be the reason for the longer $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ bonds.

The $\pi-\pi$ stacking usually observed in reported phenylhydrazone derivatives (Shan et al., 2003) is not observed in (I). A C $-\mathrm{H} \cdots \pi$ interaction occurs between the methyl group and the $\mathrm{C} 11^{\mathrm{iii}}$-containing benzene ring of a neighboring molecule, as shown in Fig. 1 [symmetry code: (iii) $-x, 1-y, 1-z$]. The $\mathrm{C} 8-\mathrm{H} 8 c \cdots C g$ angle and $\mathrm{H} 8 c \cdots C g$ distance are 152° and $2.67 \AA$, respectively (Cg denotes the centroid of the benzene ring). The crystal packing (Fig. 2) is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

2,4-Dinitrophenylhydrazine ($0.4 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in ethanol $(10 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution ($98 \%, 0.5 \mathrm{ml}$) was added slowly with ethanol solution with stirring. The solution was heated at about 333 K
for several minutes until it cleared. An ethanol solution (2 ml) of benzylideneacetone ($0.29 \mathrm{~g}, 2 \mathrm{mmol}$) was dropped slowly into the above solution with continuous stirring. The mixture was refluxed for half an hour. After cooling to room temperature, red microcrystals appeared in the solution. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with a mixed solution of acetone and ethyl acetate (1:1).

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$
$M_{r}=326.31$
Monoclinic, $P 2_{1} / n$
$a=7.3916(3) \AA$
$b=15.7043(7) \AA$
$c=13.7350(5) \AA$
$\beta=102.4362(13){ }^{\circ}$
$V=1556.95(11) \AA^{3}$
$Z=4$

$$
D_{x}=1.392 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 7517
reflections
$\theta=2.5-24.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, red
$0.27 \times 0.15 \times 0.13 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: none
10933 measured reflections
2696 independent reflections

> 2072 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.043$
> $\theta_{\max }=25.0^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-18 \rightarrow 18$
> $l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0606 P)^{2}\right. \\
& +0.3839 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA).

$\mathrm{N} 1-\mathrm{C} 1$	$1.338(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.380(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.379(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.368(3)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.293(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.391(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.420(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.356(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.411(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.86	1.98	$2.610(2)$	130
$\mathrm{C} 8-\mathrm{H} 8 b \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.57	$3.410(3)$	146
$\mathrm{C} 13-\mathrm{H} 13 \cdots 2^{\mathrm{ii}}$	0.93	2.56	$3.406(3)$	151

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$.
Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and the torsion angle was refined to fit the electron density, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the final cycles of refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure
(Rigaku/MSC \& Rigaku Corporation, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Natural Science Foundation of Zhejiang Province of China (M203027).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bolte, M. \& Dill, M. (1998). Acta Cryst. C54, IUC9800065.
Borwick, S. J., Howard, J. A. K., Lehmann, C. W. \& O’Hagan, D. (1997). Acta Cryst. C53, 124-126.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Naidu, S. M., Krishnaiah, M., Sivakumar, K. \& Sharma, R. P. (1996). Acta Cryst. C52, 1054-1056.
Ohba, S. (1996). Acta Cryst. C52, 2118-2119.
Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 16781680.

Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku Corporation (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
Shan, S., Xu, D.-J., Hung, C., Wu, J. \& Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.
Shan, S., Xu, D.-J., Wu, J.-Y. \& Chiang, M. Y. (2002). Acta Cryst. E58, o133301335.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

